DEOXYGENATION OF EPOXIDES BY IRON **PENTACARBONYL**

Howard **Alper* and Daniel Des Roches**

Department of Chemistry, University of Ottawa

Ottawa, Ontario, Canada KlN 6N5

(Received in USA 27 September 197'7; received in UK for publication 11 October **1977)** Recent investigations have shown iron pentacarbonyl $[Fe(CO)_{5}]$ to be a useful reagent for **effecting a variety of synthetic transformations.1 Non-polar solvents such as ethers have generally been employed for these reactions.** In **several cases, it has been demonstrated that reactions which do not take place, or are sluggish in such solvents, can readily occur by the** use of dipolar aprotic solvents. For example, treatment of sulfonyl chlorides with Fe(CO)₅ **in N,N-dimethylacetamide (DMAC) or tetramethylurea (TMU) affords thiosulfonates in good yields**

(use of dioxane or di-n-butyl ether as the solvent gave low product yields). 2 This communication describes the facile deoxygenation of epoxides by Fe(CO)₅ under neutral conditions.

Reaction of <u>trans</u>-stilbene oxide (Table 1, entry 1) with an equimolar amount of Fe(CO)₅ in TMU for 2.25 hr. at 145°C affords trans-stilbene in 56% yield and cis-stilbene in 22% yield **(DMAC can also be used). Use of refluxing tetrahydrofuran (2.5 hr.) as the reaction medium gave recovered starting material. The reaction in TMU is not catalytic in the metal carbonyl.** trans-Stilbene does not react at 145° in TMU, either in the presence or absence of Fe $(\omega)_{5}$.

Good yields of olefins were realized by treatment of a variety of epoxides with Fe(CO)₅ **for 2.0 - 2.5 hr. (Table 1, entries 2-6). Note that particularly high yields resulted if the olefin formed was a conjugated one. The reaction can tolerate a variety of functional groups including ketone, ester, hydroxyl, sulfonyl and olefin.**

4155

TABLE 1

YIELDS OF OLEFINS OBTAINED FROM REACTION OF

a Products were identified by comparison of m.p. or b.p., and spectral data with authentic samples. b An unidentified by-product was also formed.

Monosubstituted epoxides such as 1,2-epoxydodecane (Table 1, entry 7) are also deoxygenated by Fe(CO)₅ but isomerization of the resultant olefin occurs as well. Very rapid isomer**zation of 1-decene and 5-methyl-1-hexene to mixtures of internal olefins occurred in the** presence of a catalytic quantity of Fe(CO)₅ (TMU, 1 hr., 145°). No isomerization was observed in the absence of $Fe(CO)_{5}$. The disubstituted olefins, 2,4-dimethyl-l-pentene and 2,4,4-trimethyl-1-hexene, were inert to Fe(CO)₅ in TMU, and therefore could be obtained from the **corresponding epoxides without undergoing further reaction. The isomerization of certain olefins by iron carbonyls has been reported previously3.**

Possible pathways for the deoxygenation reaction are outlined in Scheme 1. What likely occurs first is displacement of a carbon monoxide ligand of $Fe(CO)_{5}$ by the solvent to give (tetramethylurea)iron tetracarbonyl (1), a much more reactive species than Fe(CO)₅ itself. **Scheme** 1

Reaction of 1 with an epoxide may afford 2, which, on subsequent insertion into a C-O bond of **the epoxide, affords 3. The latter may also be generated by direct insertion from 1. By analogy to other ligand migration processes, 4'5 donor solvent induced migration of the Fe-O sigma bond to one of the terminal carbonyl carbons attached to Fe would give the ferrolactone** 4. Collapse of the latter affords the olefin. The formation of 3 from 1 and/or 2 may proceed via a radical intermediate, consistent with the non-stereospecificity of the reaction.

It is conceivable that, instead of TMU displacement from 1 by the epoxide, attack by the epoxide oxygen at a terminal carbonyl carbon of 1 occurs to give 2. Carbon-oxygen bond cleavage of the latter (6), followed by elimination of CO₂, would afford the olefin. For entries 3-5 (Table 1), the carbon atom involved in C-O bond cleavage $(5 \rightarrow 6)$ cannot bear an **electron-withdrawing group.**

The following general procedure was used. An equimolar mixture of the epoxide and Fe(CO)₅ in TMU (10-15 ml.) was stirred at 145° for 2.0-2.5 hr. (N₂ atmosphere). The solution **was cooled to room temperature and then poured into water. The product, if solid, was filtered and recrystallized or chromatographed on silica gel or Florisil.** If **liquid, the olefin was** extracted with ether, washed 4-5 times with water, dried (MgSO₄), and evaporated. Further **purification, if required, was effected by column chromatography.**

In summary, Fe(CO)₅ can effeciently deoxygenate a wide variety of epoxides to olefins. **There are, of course, other reported methods for effecting this transformation.6 However, in many cases, the reaction is of limited scope (i.e., few functional groups can be** tolerated)^{6a,b}, and expensive reagents are required in certain instances (WCl₆-RLi).^{6C}

Acknowledgements

We are grateful to the National Research Council of Canada for support of this research. We are indebted to Drs. T. Durst and P. Morand for providing generous quantities of several **epoxides.**

References

- **1. H. Alper in "Organic Synthesis via Metal Carbonyls", Volume 2, I. Wender and P. Pino, Eds., J. Wiley and Sons, Inc., New York, N.Y. 1977, pp. 545-593.**
- **2. H. Alper, Tetrahedron Lett., 1239 (1969).**
- 3. T.A. Manuel, <u>J. Org. Chem</u>., 27, 3941 (1962).
- **4. F. Calderazzo, Anqew. Chem. Int. Ed., l6=, 299 (1977).**
- 5. H. Alper and W.G. Root, J. Amer. Chem. Soc., 97, 4251 (1975).
- **6. e.g., see: (a)** J.A. **Gladysz, J.G. Fulcher and S. Togashi, J. Org. Chem., 2, 3647 (1976);** (b) J.E. McMurry and M.P. Fleming, <u>J. Org. Chem</u>., 40, 2555 (1975); (c) K.B. Sharpless, **M.A. Umbreit, M.T. Nieh, and T.C. Flood, J. Amer. Chem. Sot., 2, 6538 (1972), and references cited within these papers.**